Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P72920A
Publications Code 4MB1_02_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission
- cas - Correct answer scores full marks (unless from obvious incorrect working)
- wr - working required

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If the final answer is wrong always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.
If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question	Working	Answer	Mark	Notes
1(a)	$\frac{72}{360} \times 130 \text { or } \frac{360}{130} x=72 \mathrm{oe}$		2	M1 correct calculation or equation to find the number of red bricks
		26		A1 cas check the table for the answer
(b)			2	M1 for 2 correct probabilities. Allow as decimals 0.62 (actual $0.61538 \ldots$), $0.6,0.4,0.6$
		Fully correct		A1 oe fully correct with exact probabilities
(c)	$\begin{aligned} & \frac{50}{130} \times " \frac{9}{15} "+" \frac{80}{130} " \times " \frac{6}{15} " \text { or } \\ & 1-\frac{50}{130} \times \frac{6}{15}-" \frac{80}{130} " \times " \frac{9}{15} " \end{aligned}$		2	M1ft their Tree diagram. Allow $\frac{3}{13}+\frac{16}{65}$ May be seen on tree diagram at the end but must be added. If tree diagram is incorrect they need to show working.
		$\frac{31}{65}$		A1 cas oe awrt 0.48 (actual answer $0.47692 .$.) ignore subsequent incorrect changes to decimal form
				Total 6 marks

Qu	Working	Answer	Mark	Notes
2(a)	$\frac{1.3}{1.25} \text { or } \frac{1.3-1.25}{1.25} \text { oe }$		2	M1 Allow $\frac{1.3 n-1.25 n}{1.25 n}$ or 1.04 or 104
		4		A1 cas
(b)	1.3×1.2 or $1.30+0.2 \times 1.3$		2	M1 Condone 1.25×1.2 or $1.25+0.2 \times 1.25$
		1.56		A1 cas
(c)	0.28×300		2	M1
		84		A1 cas
(d)	$\begin{aligned} & \frac{5}{3+5} \times(300-" 84 ") \text { or } \\ & (300-" 84 ")-\frac{3}{3+5} \times(300-" 84 ") \end{aligned}$		2	M1 ft their answer to part (c)
		135		A1 cas
(e)	$\begin{aligned} & (50 \times 0.3)[\times P=15 P] \text { and } 40 \times 0.6[\times P=24 P] \\ & \text { oe } \end{aligned}$		4	M1 working out the profit for the first 90 pumpkins where P can be omitted or can be any value (providing both have same value for P). Do not allow $30 \% \times 50$ and /or $60 \% \times 40$ unless followed by $15 P$ and $24 P$ or $39 P$
	$(" 135 \text { " }-50-40) \times 0.9[\times P][=40.5 P] \text { oe }$			M1 working out the profit for the remaining pumpkins where P can be omitted or can be any value (providing same as value used for previous method). Ft their part (d) for indicating need 90% of ("their $135-50-40$) or 90% of $45 P$ or 0.9×45 but do NOT allow 40.5 if it comes from incorrect working eg $0.3 \times 135=40.5$ which will be M0 79.5 with no incorrect working will gain the $1^{\text {st }}$ and $2^{\text {nd }}$ M1
	$\frac{(" 39 " P+" 40.5 " P)}{" 135 " P}[\times 100]$			M1 dep on both method marks awarded ft their part (d) P can be omitted or can be any value providing the same value throughout
		59		A1 awrt 59 (actual answer 58.888...)

	See next page for alternative for (e)			Total 12 marks
ALT				
(e)	$(50 \times 1.3)[\times C=65 C] \text { and } 40 \times 1.6[\times C=64 C]$ oe		4	M1 working out the selling price for the first 90 pumpkins where C can be omitted or can be any value (providing both have same value for C). Do not allow $130 \% \times 50$ and /or $160 \% \times 40$ unless followed by $65 C$ and $64 C$ or $129 C$
	("135"-50-40) $\times 1.9[\times C][=85.5 C] \mathrm{oe}$			M1 working out the selling price for the remaining pumpkins where P can be omitted or can be any value (providing same as value used for previous method). Ft their part (d) for indicating need 90% of ("their 135 "-50-40) or 190% of $45 C$ or 1.9×45 but 214.5 with no incorrect working will gain the $1^{\text {st }}$ and $2^{\text {nd }}$ M1
	$\frac{(" 129 " C+" 85.5 " C)}{" 135 " C}[\times 100]$			M1 dep on both method marks awarded ft their part (d) C can be omitted or can be any value providing the same value throughout
		59		A1 awrt 59 (actual answer 58.888...)

Qu	Working	Answer	Mark	Notes
3	$\begin{aligned} & 9000 \times 3+16000 \times 23+27000 \times 21+37000 \times 34+51000 \times 10 \\ & {[=2730000]} \end{aligned}$		4	M2 for at least 4 correct products using midpoints with intention to add. Allow $27000+368000+567000+$ $1258000+510000$ or seeing 2730000 M1 for - at least 4 products using frequency and a value within the interval with intention to add. Condone use of the lower class bound. - at least 4 correct products using midpoints without adding. Allow consistent use of changed size of number eg $9 \times 3+16 \times 23+27 \times 21+37 \times 34+51 \times 10$
	$\frac{22730000 "}{3+23+21+10+34[=91]}$			M1 dep on M1 for forming an equation ft their product Allow consistent use of changed size of number $\frac{9 \times 3+16 \times 23+27 \times 21+37 \times 34+51 \times 10}{3+23+21+10+34}$ oe
		30000		A1 cas
				Total 4 marks

Qu	Working	Ans	Mark	Notes
4(a)	$\frac{360}{180-172} \text { or }(2 n-4) 90=172 n \text { oe }$		2	M1 A correct method or equation to find the number of sides eg $(n-2) 180=172 n$
		45		A1 cas
(b)	[$\mathrm{UB}=] 5.25$ or [LB =] 5.15		6	B1 a correct upper or lower bound seen or used. Allow $[U B / 2=] 2.625 \text { or }[L B / 2=] 2.575$
	$\begin{aligned} & \tan (86)=\frac{h}{\mathrm{UB} / 2} \text { or } \tan (4)=\frac{\mathrm{UB} / 2}{h} \text { or } \frac{h}{\sin (86)}=\frac{\mathrm{UB} / 2}{\sin (4)} \\ & \cos (86)=\frac{\mathrm{UB} / 2}{S} \text { or } \sin (90-86[=4])=\frac{\mathrm{UB} / 2}{S} \text { or } \frac{S}{\sin (86)}=\frac{\mathrm{UB}}{\sin 8} \text { or } \\ & 5.25^{2}=S^{2}+S^{2}-2 S^{2} \cos 8 \end{aligned}$			M1 for setting up an equation to find the height of the triangle (h) or side length (S) allow $5.1 \leqslant \mathrm{UB} \leqslant 5.3$ or $2.55 \leqslant U B / 2 \leqslant 2.65$ condone if use $171.5 \leqslant$ angle $\leqslant 172.5$
	$\begin{aligned} & h=\mathrm{UB} / 2 \tan (86)[=37.539 \ldots] \text { or } h=\frac{\mathrm{UB} / 2}{\tan (4)} \text { or } h=\frac{\mathrm{UB} / 2}{\sin (4)} \times \sin (86) \\ & S=\frac{\mathrm{UB} / 2}{\cos (86)}[=37.63 \ldots] \text { or } S=\frac{\mathrm{UB} / 2}{\sin (90-86)}[=37.63] \text { or } S=\frac{\mathrm{UB}}{\sin (8)} \times \sin (86) \\ & \text { or } S=\sqrt{\frac{5.25^{2}}{2-2 \cos (8)}} \end{aligned}$			M1 for correct method to find h or S Allow $5.1 \leqslant \mathrm{UB} \leqslant 5.3$ or $2.55 \leqslant U B / 2 \leqslant 2.65$ or awrt 37.5 or awrt 37.6 If previous method mark is awarded allow for awrt $36.5 \leqslant h \leqslant$ awrt 37.9 or awrt $36.5 \leqslant S \leqslant$ awrt 40.0 This mark implies the previous M1
	$\begin{aligned} & \text { Area of triangle }=\frac{1}{2} \times \mathrm{UB} \times{ }^{2} h "[\text { Area }=98.54 \ldots] \text { or } \frac{1}{2} \times{ }^{\prime \prime} h " \times " S " \times \sin (4) \\ & \text { or } \frac{1}{2} \times \mathrm{UB} \times " S " \times \sin (86) \text { or } \frac{1}{2} \times{ }^{\prime \prime} S^{\prime \prime} \times " S " \sin (8) \end{aligned}$			M1 for finding the area of the triangle where $5.1 \leqslant \mathrm{UB} \leqslant 5.3$ and $S<5$ or $S>5.5$ or $h<5$ or $h>5.5$ allow awrt 98.5 $\mathrm{NB} 0.5 \times \mathrm{UB} \times \mathrm{UB} \sin 172$ is M0

$\text { or } R=\frac{\mathrm{UB}+\mathrm{UB}+S}{2} \text { and } \sqrt{R(R-\mathrm{UB})(R-\mathrm{UB})(R-S)}$					
Area of polygon $=$ "45"x"98.54 ..." or $2 \times 4545 \times 49.27 \ldots$..."					M1 dep on the $3^{\text {rd }} \mathrm{M}$ mark being awarded
				4430	A1dep on seeing 5.25or 2.625 for UB throughout awrt 4430
					Total 8 marks
Question	Working	Answer	Mark	Notes	
5(a)	Line $y=3$ drawn		2	M1 line drawn.	
		-0.4, 2.4		A1	
(b)		$\begin{gathered} 3.38,-1, \\ 1.13 \end{gathered}$	2	B2 for all 3 correct. Allow 3.375 / 1.125 (B1 for 2 correct we will allow 3.4 or 3.3 or 3.37 for 3.38 and 1.1 or 1.12 for 1.13 for B1 only)	
(c)		Correct graph drawn	2	B2 Fully correct graph. (B1 All points plotted correctly or 4 points plotted correctly with smooth line joining them.) if you are unable to see the points then allow if the lines goes through them within/on the circles.	
(d)(i)		$\begin{gathered} (1.8,3.7) \\ \text { and }(-0.8, \\ 2.4) \end{gathered}$	1	B1 ft their graph allow values within ± 0.1 (inclusive) or allow "their values " within ± 0.1 (inclusive) ignore incorrect extras	
(ii)	$\begin{aligned} m & =\frac{" 3.7 "-" 2.4 "}{" 1.8 "-("-0.8 ")} \text { or } \\ y & =0.5 x+\ldots \end{aligned}$		3	M1 correct method to find the gradient (allow figures within ± 0.1 (inclusive)) or $y=($ values within 0.5 ± 0.1 (inclusive) $) x \pm \ldots$ or their coordinates which may be from part(d)(i) or any coordinates on their line from the graph. Full working for finding the gradient from 2 points must be seen if line is incorrect.	
	$\begin{aligned} & y=\ldots x+2.8 \text { or } \\ & y-" 3.7 "=\frac{" 3.7 "-" 2.4 "}{" 1.8 "-(-" 0.8 ")}(x-" 1.8 ") \end{aligned}$			M1 point of intersection with y-axis (ft values within ± 0.1 (inclusive) where their line crosses y-axis) or $y_{1}=" 0.5 " \times x_{1}+c$ where $\left(x_{1}, y_{1}\right)$ is a point on their line or $y=\ldots x+($ values within 2.8 ± 0.1 (inclusive) $)$ or correct equation for their coordinates if working shown	
		$y=0.5 x+2.8$		A1 allow any value in the ranges $0.4 \leqslant m \leqslant 0.6$ and / or $2.7 \leqslant c \leqslant 2.9$ Allow fractions providing they lie in the range	

Question	Working	Answer	Mark	Notes
6(a)		19	1	B1
(b)(i)		9	1	B1
(ii)		41	1	B1
(iii)		35	1	B1
				SC for (b) answers of (i) 2, (ii) 6, (iii) 5 Allow B1 for all 3 of these values - mark as 100 for(i) and 0 for (ii) and (iii).
(c)	$\frac{3+4}{12+6+3+4}$		2	M1 Allow $\frac{7}{n}$ with (integer n) >7 or $\frac{m}{25}$ with (integer m) <25 but must see the 7 or 25 in the fraction
		$\frac{7}{25}$		A1 cas oe Do not allow 0.28
				Total 6 marks

Question	Working	Answer	Mark	Notes
$7(\mathrm{a})$		15	1	B1

Qu	Working	Answer	Mark	Notes
8	$\angle A B C=90^{\circ}$		7	M1 using circle theorem. May be seen on diagram with right angle symbol or 90°
	[let $x=B C$ then] $\left[A C^{2}=\right] x^{2}+(x-2)^{2}$ or $\left[B C^{2}=\right]\left(\frac{5}{4} x\right)^{2}-(x-2)^{2}$ or $\cos \angle A C B=\frac{4}{5}$ or $\sin \angle C A B=\frac{4}{5}$ $\sin \angle A C B=\frac{3}{5}$ or $\cos \angle C A B=\frac{3}{5}$			M1 using Pythagoras where $A B$ is 2 less than $B C$ eg [let $y=A B$ then] $\left[A C^{2}=\right] y^{2}+(y+2)^{2}$ or $\left[B C^{2}=\right]\left(\frac{5}{4}(y+2)\right)^{2}-y^{2}$ Allow if square rooted or if finding angles must clear which angle $4 / 5$ is. This implies the previous method mark Note that Students may use $B C$ or any letter instead of x throughout the question
	$\begin{aligned} & (x-2)^{2}+x^{2} \leqslant\left(\frac{5}{4} x\right)^{2} \text { or } \\ & \cos \angle C A B=\frac{4(x-2)}{5 x} \text { or } \\ & \sin \angle A C B=\frac{4(x-2)}{5 x} \end{aligned}$			M1 Allow any inequality or $=$ sign. For using $A B^{2}+B C^{2} \leqslant\left(\frac{5}{4} B C\right)^{2}$ where $A B$ is 2 less than $B C$ and all 3 terms are in terms of the same letter. Allow if square rooted eg $\sqrt{(x-2)^{2}+x^{2}} \leqslant \frac{5}{4} x$ or $y^{2}+(y+2)^{2} \leqslant\left(\frac{5}{4}(y+2)\right)^{2}$ (implies the previous M mark) or for $\frac{4(x-2)}{5 x}$ seen. If $x^{2}+(x-2)^{2}$ oe seen allow their multiplied out version. Condone $\frac{5}{4} x^{2}$
	$\begin{aligned} & 7 x^{2}-64 x+64[\leqslant 0] \text { or } \\ & \frac{4(x-2)}{5 x} \leqslant \frac{3}{5} \text { oe } \end{aligned}$			M1 Allow any inequality or $=$ sign. reducing to a correct 3 term quadratic eg linear equation. Implies the previous 3 method marks
	$\begin{aligned} & (7 x-8)(x-8) \leqslant 0 \text { or } \\ & 4(x-2)=3 x \end{aligned}$			M1 eg $(7 y+6)(y-6) \leqslant 0$ correct method to solve their 3 TQ - Must multiply out to give 2 of their terms. Allow use of correct formula or completing the square/ Allow 1 sign error

$\begin{gathered} \text { ALT } \\ \text { (b) } \end{gathered}$	$\left(x-\frac{3}{2}\right)$		B1 $\left(x-\frac{3}{2}\right)$ seen or used	
	$8 x^{2} \pm m x-4$		M1 allow multiples eg $4 x^{2} \pm m x-2$	
	$8 x^{2}-6 x-4$		A1 allow multiples eg $4 x^{2}-3 x-2$	
	$x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4 \times 8 \times(-4)}}{2 \times 8}$		M1 dep on the $\mathbf{1}^{\text {st }}$ M1 Allow simplified as far as $x=\frac{6 \pm \sqrt{36+128}}{16}$	
			A1wr dep on B1 and 2 M awarded ignore subsequent changes to decimal form if exact form seen	
Qu	Working	Answer	Mark	Notes
10(a)		Rotation	3	B1 condone rotated. Do not allow if multiple transformations given. Multiple transformation are when more than one of reflection, rotation (turn), translation(move), enlargement(stretch/squash) is stated. Giving an equation of a line, SF , vector does not count as multiple transformations
		90° clockwise		B1allow 270 anticlockwise
		Centre (3, 2)		B1allow for just (3, 2)
(b)		Correct triangle drawn $(-3,4)(3,4)$ $(6,1)$	2	B2 Fully correct triangle drawn (B1 for triangle drawn with same orientation and sides 3 times the length of A (implies SF of 3 used) or 2 correct points plotted)
(c)		Correct triangle drawn $(3,-6)(5,-6)(6,-5)$	2	B2 Fully correct triangle drawn (B1 2 correct points plotted or triangle reflected in any horizontal line)
(d)	$\mathbf{N}=\left(\begin{array}{cc} k & 1 \\ k^{2}-1 & k \end{array}\right)\left(\begin{array}{cc} -k & 1 \\ k-3 & 0 \end{array}\right)$		7	M1 matrices in terms of k in correct order. Implied by fully correct matrix for \mathbf{N}
	$\mathbf{N}=\left(\begin{array}{cc} -k^{2}+k-3 & k \\ -k^{3}+k+k^{2}-3 k & k^{2}-1 \end{array}\right)$			M1 for a 2 by 2 matrix with at least 2 correct entries If matrices in incorrect order it gives $\left(\begin{array}{cc}-1 & 0 \\ k^{2}-3 k & k-3\end{array}\right)$ allow for at least 2 non zero entries correct
	$\begin{aligned} & \text { Det } \mathbf{N}= \\ & \left(-k^{2}+k-3\right)\left(k^{2}-1\right)-k\left(-k^{3}+k+k^{2}-3 k\right) \end{aligned}$			M1 Correct method for determinant of their 2×2 matrix ft their matrix \mathbf{N} (need not be labelled) as long as at least 2 entries in the matrix are in terms of k (Allow max of 1 zero)

Question	Working	Answer	Mark	Notes
11(a)	10 or $\pm 12 t$		2	M1 one non zero term correct
		10-12t		A1 cas
(b)	" $10-12 t$ " $=0$		2	M1 ft for equating their expression in t from part (a) to 0
		$\frac{5}{6}$		A1 cas oe awrt 0.83 ignore subsequent changes to decimal form if a correct exact form seen
(c)	$0=4+10 t-6 t^{2}$		5	M1 for equating $4+10 t-6 t^{2}$ to 0 This may be awarded if seen in part (b) This could be implied by gaining either 2 or $-\frac{1}{3}$ as a solution
	$d=4 \times 224+5 \times 22^{\prime 2}-2 \times 22^{\prime \prime}[=12]$			M1 substituting a positive time into d Working must be seen if t is incorrect. This can be any value including $5 / 6$
	$\begin{aligned} & d=4 \times 2+5 \times 2^{2}-2 \times 2^{3}[=12] \text { or } \\ & 20=k+d \end{aligned}$			M1 substituting $t=2$ in to find the distance travelled, d or for realising $20=k+d$
	$20=k+4 \times 2+5 \times 2^{2}-2 \times 2^{3}$			M1 Setting up the equation using d and substituting $t=2$
		8		A1 cas
				Total 9 marks

Question	Working	Answer	Mark	Notes
12(a)	$\begin{aligned} & {[\overrightarrow{O C}=] 3 \mathbf{a}+\frac{1}{3}(15 \mathbf{b}-3 \mathbf{a})[=2 \mathbf{a}+5 \mathbf{b}] \mathbf{o r}} \\ & {[\overrightarrow{O C}=] 15 \mathbf{b}+\frac{2}{3}(3 \mathbf{a}-15 \mathbf{b})[=2 \mathbf{a}+5 \mathbf{b}] \text { or }} \\ & {[\overrightarrow{C O}=]-3 \mathbf{a}-\frac{1}{3}(15 \mathbf{b}-3 \mathbf{a})[=-2 \mathbf{a}-5 \mathbf{b}]} \end{aligned}$		3	M1 A correct method to find $\overrightarrow{O C}$ or $\overrightarrow{C O}$ May be embedded in $\overrightarrow{B N}$ condone $\overrightarrow{O C}$ for $\overrightarrow{C O}$
	$\begin{aligned} & {[\overrightarrow{B N}=]-15 \mathbf{b}+\frac{3}{4}\left(" 2 \mathbf{a}+5 \mathbf{b}^{\prime \prime}\right) \mathbf{o r}} \\ & {[\overrightarrow{B N}=]-\frac{1}{4}\left(" 2 \mathbf{a}+5 \mathbf{b}^{\prime \prime}\right)+\frac{2}{3}(3 \mathbf{a}-15 \mathbf{b}) \text { or }} \\ & {[\overrightarrow{B N}=] 2 \mathbf{a}-10 \mathbf{b}+\frac{1}{4}\left("-2 \mathbf{a}-5 \mathbf{b}^{\prime \prime}\right)} \end{aligned}$			M1 Correct method to find $\overrightarrow{B N}$ or $\overrightarrow{N B}$ Allow any correct method ft their $\overrightarrow{O C}$ condone $\overrightarrow{B N}$ for $\overrightarrow{N B}$
		$\frac{3}{2} \mathbf{a}-\frac{45}{4} \mathbf{b}$		A1 cas oe

(b)	$\overrightarrow{O M}=3 \lambda \mathbf{a} \text { or } \overrightarrow{O M}=\mu \mathbf{a}$			M1 Allow $\overrightarrow{O M}$ or $\overrightarrow{M O}$ or $\overrightarrow{A M}$ or $\overrightarrow{M A}= \pm 3 \lambda \mathbf{a}$ or $\pm \mu \mathbf{a}$ This may be embedded in working
	eg $\overrightarrow{O M}=15 \mathbf{b}+\beta\left(" \frac{3}{2} \mathbf{a}-\frac{45}{4} \mathbf{b} "\right)$ or $\overrightarrow{A M}=-3 \mathbf{a}+15 \mathbf{b}+\varphi\left(-\frac{3}{2} \mathbf{a}-\frac{45}{4} \mathbf{b} "\right)$ or using $\overrightarrow{M N}=\overrightarrow{M O}+\overrightarrow{O N}$ gives $\gamma(-3 \lambda \mathbf{a}+15 \mathbf{b})=3 \lambda \mathbf{a}+\frac{3}{4}(" \mathbf{2 a}+5 \mathbf{b} ")$ using $\overrightarrow{O M}=\overrightarrow{O B}+\overrightarrow{B M}$ gives $\quad 3 \lambda \mathbf{a}=15 \mathbf{b}+\beta\left(\prime \frac{3}{2} \mathbf{a}-\frac{45}{4} \mathbf{b}^{\prime \prime}\right)$ using $\overrightarrow{O M}=\overrightarrow{O N}+\overrightarrow{N M}$ gives $3 \lambda \mathbf{a}=\frac{3}{4}(" 2 \mathbf{a}+5 \mathbf{b} ")+\alpha\left(" \frac{3}{2} \mathbf{a}-\frac{45}{4} \mathbf{b} "\right)$ using $\overrightarrow{B A}=\overrightarrow{B M}+\overrightarrow{M A}$ gives $\quad 3 \mathbf{a}-15 \mathbf{b}=\mu\left(\because \frac{3}{2} \mathbf{a}-\frac{45}{4} \mathbf{b}^{\prime \prime}\right)+3 \lambda \mathbf{a}$			M1 A correct method to find a second expression for $\overrightarrow{O M}$ or $\overrightarrow{M O}$ or $\overrightarrow{A M}$ or $\overrightarrow{M A}$ (has to be the same vector as for M1) eg $\overrightarrow{O M}=\frac{3}{4}\left(" 2 \mathbf{a}+5 \mathbf{b}^{\prime \prime}\right)+\alpha\left(-\frac{3}{2} \mathbf{a}-\frac{45}{4} \mathbf{b}^{\prime \prime}\right)$ or using resultant vectors using $\overrightarrow{O M}$ or $\overrightarrow{M O}$ or $\overrightarrow{A M}$ or $\overrightarrow{M A}$ to gain an equation in terms of \mathbf{a} and \mathbf{b} or for 2 correct expressions in terms of \mathbf{a} and \mathbf{b} for the same vector with at least one involving $\overrightarrow{O M}$ or $\overrightarrow{M O}$ or $\overrightarrow{A M}$ or $\overrightarrow{M A}$ $\text { eg } \overrightarrow{O B}=15 \mathbf{b} \text { and } \overrightarrow{O B}=3 \lambda \mathbf{a}-\beta\left(" \frac{3}{2} \mathbf{a}-\frac{45}{4} \mathbf{b}^{\prime \prime}\right)$
	$\begin{aligned} & 15-\frac{45}{4} \beta=0\left[\Rightarrow \beta=\frac{4}{3}\right] \text { or } \\ & \frac{15}{4}-\frac{45}{4} \alpha=0\left[\Rightarrow \alpha=\frac{1}{3}\right] \end{aligned}$			M1 equating coefficients of \mathbf{b} eg $15=\frac{45}{4} \beta=0\left[\Rightarrow \beta=\frac{4}{3}\right]$
	$\overrightarrow{O M}=2 \mathbf{a}$			A1 Correct vector for $\overrightarrow{O M}$ or $\overrightarrow{A M}$ Implied by correct ratio
		2:1		A1 dependent on at least one method mark being awarded. ft their $\overrightarrow{O M}$ or $\overrightarrow{A M}$ providing it is < 3 a Allow equivalent eg $4: 2$
				NB If they gain any method mark then get $2: 1$ is full marks
				Total 8 marks

